The Discrete Kalman Filtering of a Class of Dynamic Multiscale Systems
نویسندگان
چکیده
This paper discusses the optimal estimation of a class of dynamic multiscale systems (DMS), which are observed by several sensors at different scales. The resolution and sampling frequencies of the sensors are supposed to decrease by a factor of two. By using the Haar wavelet transform to link the state nodes at each of the scales within a time block, we generalize the DMS into the standard state-space model, for which the Kalman filtering can be employed as the optimal estimation algorithm. The stochastic controllability and observability of time invariant DMS are analyzed and the stability of the Kalman filter is then discussed. Despite that the DMS model maybe become incompletely controllable and observable, it is proved that as long as the DMS is completely controllable and observable at the finest scale, the associated Kalman filter will be asymptotically stable. The scheme is illustrated with a two-scale Markov process.
منابع مشابه
On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)
In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...
متن کاملOn-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملAn Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine
Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...
متن کاملRobust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملA New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001